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Abstract

Under the assumption of bounded rationality, economic agents learn
from their mistaken predictions of the past by combining new and old
information in the formation of new beliefs. The purpose of this paper is
to examine how the policy maker, by affecting the private agents learning
process, determines the speed at which the economy converges to the
rational expectation equilibrium. Our findings show the relevance of this
transition period when we look at a criterion for evaluating monetary
policy decisions.

1 Introduction

The fact that monetary policy decisions could affect the real economy in the
short run is widely accepted. Part of the literature has obtained this result
explicitly incorporating frictions, such as nominal price rigidities, in a dynamic
general equilibrium framework under the rational expectations (RE) hypothesis.

Recently, this problem has been analyzed questioning the assumption that
the public can make unbiased predictions of the future course of the economy.
Such predictions, has been said, would be possible if people had observed the
reactions of the policy makers to various economic conditions over a long period
of time. However, this would not always be the case. It can be argued that,
for example, in the presence of regime policy shifts the public needs to learn
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about the new regime: in the early stages of this learning process, previously
held public beliefs could lead to biased predictions. Evans and Honkapohja
(2002) and Bullard and Mitra (2001)!, have shown in presence of boundedly
rational private agents, under which hypothesis the policy maker could induce
an improvement of agents’ forecasts over time and determines a convergence of
peoples’ guess to the RE equilibrium (E-Stability). These papers have studied
the asymptotic properties of the equilibria obtained under learning but no results
are derived about the dynamics along the convergence process, the transition
to the REE.

The purpose of this work is to examine the role of the policy maker in de-
termining the speed of convergence of the private agents learning process and
the implications in terms of the monetary policy design problem. I show that
policies that asymptotically determine the same REE could in the transition
generate extremely different dynamics in the real economy. In particular, the
central result of this paper is that, if policy decisions depend on social welfare
and the policy maker ignores the private agents’ learning dynamics in the tran-
sition, considerable welfare losses could be incurred. Intuitively, the fact that
under a certain policy the private agents’ learning process (and, in general, the
economy) converges after 100.000 years, while under another one the transition
lasts only 1 year, is relevant in terms of policy decisions.

I study the transition in the learning process to the REE by adapting ar-
guments described by Marcet and Sargent (1992), which in turn are based on
theoretical results of Benveniste, Metivier and Priouret (1990). The underlying
mechanism is the following: the policy maker chooses a policy rule; this pol-
icy determines the eigenvalues of the associated ordinary differential equation
(ODE) at the fixed point; the eigenvalues incorporate information about the
speed at which agents learn.

The paper is organized as follows. Section 2 presents the general monetary
policy design problem under discretion and rational expectation hypothesis.
Section 3 presents the model with boundedly rational private agents and shows
that, if the policy maker does not take into account his role in determining the
speed of convergence of the learning process to the REE, private agents could
need many periods in order to learn the REE. In section 4 I show how the policy
maker should take into account the fact that his policy decisions will affect the
transitions dynamics. In section 5, I consider a policy that allows the policy
maker to increase (or reduce) the speed of convergence without affecting the
long run equilibrium (i.e., the REE equilibrium at which the learning process
converges) and analyze the implications in terms of policy responses to changes
in expected inflation and expected output gap, and in terms of cost-push shocks
and government expenditure shocks.

L An earlier paper by Howitt (1992) has already showed that under some interest rate rules
the rational expectation equilibrium is not learnable.



2 The Monetary Policy Design Problem

Choosing between policies based on simple rules or derived as a solution of a
specified optimization problem is the point of departure for the analysis of how
to conduct monetary policy. We will start by considering the solution of the
optimal monetary policy problem without commitment (discretionary policies),
where any promises made in the past by the policy maker do not constrain
current policies?.

2.1 A Baseline Model

Much of the recent theoretical analysis of monetary policy has been conducted
using the ”New Phillips curve” paradigm, reviewed in Clarida, Gali and Gertler
(1999) and Woodford (1999). The baseline framework is a dynamic general
equilibrium model with money and temporary nominal price rigidities. We will
consider the linearized reduced form of the economy with competitive monop-
olistic firms, staggered prices and private agents that maximize intertemporal
utilities. From the private agents side we have an intertemporal ”IS curve” and
an Aggregate Supply (AS) modeled by an expectations-augmented ”Phillips
Curve”:

IS: Tt — Etxt+1 — @ (Zt - Et”t«kl) + gt (21)

AS: T = Q¢ + ﬁEtTrt+1 + ug (22)

where x4 is the output gap, that is the log deviation of actual output (y;) from
the potential output (z;) (i.e., the level of output that would arise if wages and
prices were perfectly competitive and flexible)

Tt = Yt — 2t (23)

7 is actual inflation at time t, Eﬂrt_,_l is the level of inflation that private agents
expects for period t 4 1, given the information at time ¢. Similarly EtxtH is
the level of output gap that private agents expect for period t + 1, given the
information at time t; 4; is the short term nominal interest rate and is taken
to be the instrument for monetary policy; u; is a cost-push shock and g; is a
demand shock, with

Up = Py Ut_1 + ¢ (2.4)
gt = PgGt—1 + Ut (2.5)
vg ~ N(0,0,) and iid (2.6)

B .- .
=1 leave for future research a general study of the transition of learning process for monetary
policy problem under commitment



et~ N(0,0.) and iid (2.7)

The IS relation approximates the Euler equation characterizing optimal ag-
gregate consumption choices and the parameter ¢ can be interpreted as the
rate of intertemporal substitution. The AS relation approximate the aggregate
pricing equation emerging from monopolistically competitive firms’ optimal be-
havior in Calvo’s model of staggered price determination®.

The central bank objective function depends on the squared deviations of
output gap and inflation from their respective targets?.

Amx4<&§:y§PﬁH+A@m4fm2 (2.8)
=0
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where T allows for a possible deviation of social optimal from potential output,
and the target inflation is zero.

The policy problem consists in choosing the time path for the instrument ¢,
to engineer time paths of target variables m;4; and (x:y; — %) that maximizes
the objective function subject to the constraints 2.1 and 2.2.

In this context, a central bank operating under discretion chooses the current
interest rate by reoptimizing every period. Assuming that the policy maker
cannot credibly manipulate beliefs, he would maximize his objective function
taking private sector expectations as given. The solution of this problem yields
the following optimality conditions®

Ao A8 A A

T = (/\+a2)x+ (/\+(X2)Et7rt+1 + mut (29)
A all =~ «
= T — E - 2.1
T ()\+a2)x 0tad) 141 ()\+a2)m (2.10)

The optimal outcome could be written as a feedback policy that relates the
policy instrument i; to the current state of the economy and the expectations
of private agents:

it = + VaEuwess + Vi B + Vi + 700 (2.11)

3 Inflation is increasing with the output gap as price are set as a markup over real marginal
costs, which are increasing with the output gap. Higher expected inflation raises current
inflation, as price setters cannot fully adjust to current shocks.

11 will consider A as an exogenous policy parameter, as is often done in the monetary
policy literature. An alternative approach consists in obtaining it as the result of the general
equilibrium problem where the value of A would depends on the representative consumer
preferences and firms price setting rules.

5To obtain this result note that, after substituting the constraints 2.1 and 2.2 in to the
loss function, the problem becomes

]V[i?m_% [(aEtmtJrl — it + 9t + (B+ ) By + Ut)2 + A(Bizi41 — ¢ (it — Bymeq1) + gt — 5)2

st Eixiq1, Bimegp1 given

and the FOC is:

it = —mT-F éEt1t+1 + (1 + (/\——:o%) Eymiqq + ‘qj + m
and (2.9), (2.10) are obtained by substituting this expression into (2.1) and (2.2).
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where

AR 2.12
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The interest rate rule states that the policy maker should respond to expected
inflation and output gap and observable exogenous shocks according to the op-
timal policy coefficients v*,v%, vy, Vs, Vs, for this reason (2.11) is also called the
Optimal Expectations-based reaction function (Evans and Honkapohja, 2002).

2.2 The Rational Expectation Equilibrium

Under Rational Expectation, the inflation and output gap equilibrium values,
derived from (2.9) and (2.10), are the following:

Ty = ar + bruy (2.13)
Tp = Ay + by (2.14)
where a, by, a,,b, are
Ao
L= — ¢ = 2.15
“ A +a2) — 23" (2.15)
b — A
" (/\ + OéQ) - Aﬂpu
VI
* A +a2)—)\3
b - «o

()‘ + 042) - )‘ﬂpu
and the expected inflation and output gap would be

Et’ﬂ't+1 = Et77t+1 = ar + bﬂpuut (216)

Et.’L't+1 = Et.’L't+1 = ayz + bmpuut (217)

If we substitute the value of the conditional expectations (2.16) and (2.17)
into (2.11), the optimal policy rule could be written as:

i ="+ v+ vy g (2.18)
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Equation (2.18) says that the policy maker should offset demand shocks (g;)
adjusting the nominal interest rate in order to neutralize any shock to the IS
curve; for what concerns the supply shocks (u;), we have a trade-off between
inflation and output gap variability. Since this optimal policy rule involves only
the fundamentals of the economy (demand and supply shocks), (2.18) could
be defined as the Optimal fundamentals-based reaction function under rational
expectations (Evans and Honkapohja (2002))°.

2.3 RE and the Expectations-based reaction function

We would like to stress the fact that under rational expectations, we have a
problem of indeterminancy of optimal expectations-based policy rules.
Simply consider a generic ezpectations-based policy rule of the form:

it =7 + Vo Beweg + Y Bemin + v,u + Vg9t (2.20)

Now, assuming rational expectations, we could substitute (2.16) and (2.17) in
to (2.20) obtaining the following policy rule:

i = (7 + Vplz + 7770’71') + (Vzbmpu + r)/ﬂ'bﬂ'pu + 7u) ug + Vg9t (221)

Equation (2.21) should be consistent with the optimal fundamentals-based policy
rule derived in equation (2.18). That is

Y = (Y + 720 + Vex) (2.22)
o=,

Notice that (2.22) is a system of three equations on five unknowns. Obvi-
ously this system has multiple solutions, meaning that there is a continuum of
expectations-based policy rules of the form (2.20) that are consistent with the
optimal discretionary rational expectation equilibrium.

6Many autors (see for example Woodford (1999)) have shown that this interest rate rule
leads to indeterminacy, i.e. a multiplicity of rational expectation equilibria. This means,
under this policy rule, there exists other stationary REE.



3 Learning Models and Policy Analysis

The current standard hypothesis about expectations in the monetary policy de-
sign problem, as we have seen, is the Rational Expectation hypothesis, meaning
that agents do not make systematic forecasting errors and their guesses about
the future are on average correct.

In this paper I focus on a different approach to model expectations; I assume,
while the policy maker is perfectly rational, private agents do not initially have
rational expectations, but instead they form forecasts by using recursive learning
algorithm and these forecast functions are revised over time as new data become
available. Under this approach, the rational expectations equilibrium becomes,
possibly, a limit of the temporary learning equilibrium. In contrast, rational
expectation approach retains rational expectation equilibrium continuously over
time.

3.1 Bounded Rationality and Rational Expectations

In the literature, economic models with adaptive learning agents have been used
with two different purposes. First, by providing an asymptotic justification for
the RE hypothesis and a selection device in presence of multiple REE, they
have been used to offer a rationale for rational expectations; second, to offer a
description of the behaviour of the economy not only asymptotically, but even
during the transition to the REE, showing dynamics that are not available under
perfect rationality and that could be of empirical relevance.

The first approach is, for example, in Evans and Honkapohja (2002), Bullard
and Mitra (2001) and Bullard and Mitra (2002), the second one is used by
Marcet and Sargent (1989b), Marimon (1997), Sargent (1999) and Marcet and
Nicolini (2001).

In this paper I will show that considering learning in a model of monetary
policy design is particularly important in order to describe not only the rational
expectation equilibrium to which we could converge under ”plausible” learning
schemes, but even to describe the dynamics in the transition to this equilibrium.

3.2 The Learning Mechanism

The methodology I will follow to model the learning process is the one consid-
ered by Marcet and Sargent (1989a) and Evans and Honkapohja (2001, 2002).
Private agents, using data generated by the system in which they operate, up-
date their forecasts through recursive least squares alghorithms. This procedure
is an example of adaptive real-time learning, which basic idea is that agents fol-
low a standard statistical or econometric procedure for estimating the perceived
law of motion of the main economic variables. The forecasts needed in decision-
making are then computed from the estimated law of motion. The learning
mechanism says how new information is incorporated into the statistics.

Let’s go back now to the monetary policy design problem under discretion.
A first easy way to introduce boundedly rational private agents in the context



we have analyzed before is to assume that ”the policy maker does not make ac-
tive use of learning behavior of the agents” (Evans and Honkapohja (2002)). In
this case, the only difference with the traditional monetary policy problem un-
der discretion and rational expectation hypothesis concerns the private agents’
forecasting functions.

Let’s define

n_[”} (3.1)

Tt

than we could rewrite (2.9) and (2.10) in a compact way as

Yt =g (EtY:f+17 Ut, Gt, 77) (32)

where 7 is a vector of parameters in the economy that includes parameters of
monetary policy.
Under rational expectations, if we define

&, = < Z: > (3.3)

®, = < Zz ) (3.4)

we could write (2.13) and (2.14) in the following way:

Vimgwone) = (7 ) () (35)

Under least squares learning hypothesis, we assume that the private agents
do not know the effective value of the a,,b,,a,,b, coefficients, but estimate
them through recursive least square regressions. In this case, agents expecta-
tions are given by:

EYi=h (g, @y (1) , Pt (1)) (3.6)

where @, ; (1) and @, ; (1) are certain statistics inferred from past data and h
is the forecast function that depends on today’s state and the statistics. These
statistics are generated by learning mechanisms f, and f;

Dt (1) = frr (Prrye (1) 5w, 1) (3.7)

q)z,t (M) = fm (q)z,t (M) , Uty M) (38)

where p are certain learning parameters that govern how past data is used into
forming the statistics. Equations (3.2), (3.6), (3.7) and (3.8) determine the
equilibrium sequence for given learning parameters pu.

Three points should be enfatized:



1. The statistics are only functions of observed data, not of the true model
or the true parameters ®,., ®.

2. The learning mechanisms f, and f, says how new information is incorpo-
rated into the statistics

3. The learning parameters p govern for example the weight that is given to
recent information.

In the context of our model, if we define

7, = ( pulm ) (3.9)

the function A will be

oy Pl
EtYYt+1 = ,’ X Zt (310)

x,t

I assume learning mechanisms f, and f;

CI)ﬂ-jt = q)ﬂ—yt_l + t*IR{_lth_g (7Tt_1 - Z;_Qq)ﬂ—yt_l) (311)
Dpp = Ppy 1+t RN Zy o (t01 — Z] 9®a1) (3.12)

where
Ry =Ry 1+t (Ze—1Z{_y — Ri—1) (3.13)

That is, the perceived law of motion (PLM) of inflation and output gap are
updated by a term that depends on the last prediction errors’ weigthed by the
gain sequence t~1. It is well known that in this case the adaptive procedure is
the result of a least squares regression of inflation and output gap on a constant
and the cost push shocks.

By substituting the actual law of motion (ALM) of inflation and output gap,
as described by (2.1) and (2.2), into equations (3.11) and (3.12) it is easy to
see that the estimates of the learning parameters at time ¢ depend on the past
values of the monetary policy instrument ;.

"This formula implies that private agents do not use today’s inflation and output gap in
order to formulate their forecasts. Moreover we are assuming that the agents know the actual
law of motion of the exogenous shocks u¢. This means that we assume, for simplicity, that
private agents do not learn about the behavior of the cost push shocks. If not, it too can
be estimated by a separate regression of us on us—1. These assumptions are made purely for
convenience, and they are often made in models of learning, since they simplify solving the
model. The dynamics of the model are unlikely to change.



3.3 E-stability of the REE

An important aspect of recursive learning is that, under some conditions, the
learning mechanism converges to rational expectations and the learning equilib-
rium converges to the REE (E-stability). In order to determine the learnability
of a rational expectation equilibrium I will follow the literature on least-squares
learning (Marcet and Sargent (1989) and Evans and Honkapohja (2001)). The
basic concept is the E-Stability result, that states that if the equilibrium is
expectational stable (E-Stable), than the recursive least squares learning equi-
librium is locally convergent to the rational expectations equilibrium. Stability
under learning, or learnability of the REE, is desirable because it indicates that
if agents are learning from past data, their forecasts will converge over time to
the REE.

Evans and Honkapohja (2002) show that, in an economy where private agents
are learning in the way we have just described, if the policy maker assumes (in-
correctly) that private agents are fully rational (i.e. the policy maker follows the
optimal fundamentals-based reaction function (2.18)), then the rational expec-
tations equilibrium is not only undetermined but even unstable under learning
dynamics. In other words, in such an economy, small expectational errors by
private agents become magnified by the policy, and the probability to converge
to rational expectation is equal to zero. If, instead, the policy maker follows
the specific expectations-based policy rule (2.11), the private agents’ learning
mechanism converges to the rational expectations and the resulting equilibrium
is E-stable. More in general, Bullard and Mitra (2002) have shown under which
conditions, a generic expectations-based monetary policy rule® determines learn-
ability.

Let’s consider the set of expectations-based policy rules characterized by the
following structure:

i =7+ 'YzEtItJrl + %rEﬂTtH T YUt T Vg9t (3.14)

and let’s rewrite the actual law of motion (ALM) of inflation and output gap,
obtained by substituting (3.14) into (2.1) and (2.2), in a compact way:

Y;f = Q + R X EtYYH_l + Sut (315)

where @ and S are vectors and R is a matrix that depends on the policy pa-
rameters v, Yo, Vs Yus Vg

Q = { iaﬁ } . S= [ (1 :gi%) ] (3.16)
oo [P ) e

8 The policy rule (2.11) is just an element of the set of expectations-based policy rule, with:

Y= Ve = Vo Ve = Vo Vu = Vs Vg = Vg

10



and Eth_H are the expected values of inflation and output gap, determined
using least square learning, as described in (3.10), (3.11), (3.12) and (3.13).
The ALM of inflation and output gap could be written as

{m}—Q—I—RX{a”’t]—&—(pqu{b”’t]—l—S)ut (3.18)
T Ayt ba:,t

In order to have E-Stability of the REE we need all the eigenvalues of
the matrixes R and p,R to have real parts less than one, otherwise the
rational expectation equilibrium will not be learnable’.

In the following pictures I show all the reaction functions under which we
have E-stability of the REE; all the combination v, and v, inside the shadowed
area determine that all the eigenvalues of the matrixes R have real parts less
than one. The two pictures differ for the values of the parameters: the first
one considers the Clarida, Gali and Gertler (1999) parametrization, while the
second one is derived with the Woodford (1999)!" parameters value.

Fig.1 The E-stable region under the expectations-based policy rule (CGG parametrization)

ym
A

. A
B
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| I I 7T
1 2 1 2

9In the Appendix 1, I show how to determine the necessary and sufficient conditions for
E-Stability of the rational expectation equilibrium.
10Clarida, Gali and Gertler (CGG) and Woodford (W) derive from regressions on US data
respectively, the following values for the economy parameters
¢ = 1, a=03, =09, p,=0.35
¢ = 6.37, a=0.024, =099, p, =0.35

11



Fig.2 The E-stable region under the expectations-based policy rule (Woodford parametrization)

I I I =T
-1 1 2
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It is interesting to represent also the specific expectations-based policy rule
(2.11); the points A and B in the two pictures correspond to the combination
v, in the two extreme cases where the policy maker does not care about the
output gap, A = 0 (point A) and where he gives equal weight to both inflation
and output gap, A = 1 (point B)!!. The pictures show that in both cases the
rational expectation equilibrium is E-Stable. It is possible, moreover, to show
that for any positive and finite value of A, i.e. for all flexible inflation target-
ing policies, under the expectation-based reaction function (2.11) the rational
expectation equilibrium is E-Stable (Evans and Honkapohja (2001)).

3.4 Optimality and Learning

Evans and Honkapohja (2002) say that the expectation-based reaction function
(2.11) is not only a "good” policy because it determines an E-stable REE, but
moreover it ” implements optimal discretionary policy in every period and for all
values of private expectations” also in a context where ” private agents behave in
a boundedly rational way”. In order to identify (2.11) as the optimal policy rule
under discretion and learning it is crucial here the assumption that ” the policy
maker does mot make active use of learning behavior on the part of agents”
(Evans and Honkapojha, 2002).

However, if under rational expectation the problem of optimal ”discretionary
policy” implies by definition that policy maker cannot affect private agents
expectations, under the hypothesis of bounded rational private agents, since
policy decisions actually do affect the learning process, a perfectly rational policy
maker should take it into account in solving the monetary policy design problem.
In fact, if private agents’ expectations are the result of the estimates of the
learning parameters that depend on the past values of the monetary policy
instrument, the policy maker, through his decisions, will affect the estimates

11Tn the literature, the case A = 0, is defined as strict inflation targeting policy, while, in
general when A > 0, we talk about flezible inflation targeting policy

12



and, cosequently the learning process of private agents (at least in the transition
to the REE).

In this case, the expectation-based reaction function (2.11) is not necessar-
ily optimal under learning, but could be defined as asymptotically-optimal: if
private agents’ perceived law of motion is well specified, once that the learning
process has converged to rational expectations, than we know that policy rule
(2.11) will be optimal. Since there is an infinite number of Ezpectations-based
policy rule that, once the agents have learned, determines the same optimal
REE, but in the transition to the REE each policy will determine a different
dynamic in the economy, than the problem of discriminate between them be-
comes relevant. We will see in the rest of the paper how this aspect has to be
taken into account in the monetary policy design problem.

3.5 The Transition to the REE

In the preceding section we have seen that the expectations-based policy rule
(2.11) derived as the optimal solution of the problem under discretion and ra-
tional expectation could be taken as a starting point in the analysis of the
monetary policy design problem under learning. We have seen that since this
policy determines a unique and E-stable REE it is a ”good” policy'? not only
under RE but even under boundedly rational private agents hypothesis.

However, if we simulate such an economy, we observe that private agents
would need many periods in order to learn the REE. The following pictures show
that, under the two different parametrizations and assuming a flexible inflation
targeting policy with A = 0.5, with an initial error in expected inflation of 1,5
percentage points, we need, in order to converge to the REE, more than 500
periods (quarters) under the CGG parametrization and more than 2000 quarters
under the Woodford parametrization!

Fig.3 Deviation of actual inflation from the REE (CGG parametrization)

Deviation of Actual Inflation from REE

003 - (CGG Parameters)

0.025 +
0.02 4
0.015
0.01

0.005

0 T T T
1 501 1001 1501

12Here with ”good” policy I refer to Bullard and Mitra (2001) criterion for discriminate
between policy rules. They suggest that a good policy is one under which we have both
determinacy and learnability of the rational expectations equilibria.
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Fig.4 Deviation of actual inflation from the REE (Woodford parametrization)

Deviation of Actual Inflation from REE

0.03 . (Woodford Parameters)

0.025 +
0.02 4
0.015
0.01

0.005

1 501 1001 1501

These pictures show that learnability is not by itself sufficient to characterize
a policy in a context of bounded rationality. The fact that the learning speed
could be very slow means that when he considers the monetary policy design
problem under learning, the policy maker should care about the transition to
the REE.

4 Speed of Convergence to the REE

In order to understand why the learning process could be very slow, we inves-
tigate what determines the speed of convergence of the learning process to the
REE. The pictures (Fig. 1 and Fig. 2) that show the combinations of v, and ,,
for which we have E-stability, suggest the reason why the learning process could
be very slow; for values of A equal or bigger than one, we are at the border of
the E-stability region, that is the eigenvalues of the transition matrices are near
to unit. Intuitively, the coefficients in the reaction function are a component
that determines the eigenvalues of the transition matrix; the eigenvalues of the
transition matrix determine the speed at which agents learn.

In the literature, the problem of the speed of convergence of recursive least
square learning algorithms has been analyzed mainly through numerical proce-
dures and simulations. The few analytical results (Marcet and Sargent (1992))
are obtained by using a theorem of Benveniste, Metiver and Priouret (1990).
Using this theorem, it is possible to relate the speed of convergence of the learn-
ing process to the eigenvalues of the associated O.D.E. at the fixed point. In
our case the eigenvalues are the ones of the matrices R and p, R in the system

™ bTI'
{Z]_Q+RX[2£}+<I)“RX[bz:z]+0>ut (4.1)

)

In particular, it could be shown through simulations that the bigger the
eigenvalues, the slower the learning process. As special cases we could
consider two examples: E-stability and Root-t Convergence:

14



1. If all the eigenvalues of the matrixes R and p, R have real parts bigger
than one, as we have already seen, the REE is not learnable (i.e., not
E-stable).

2. If all the eigenvalues of the matrixes R and p, R have real parts less than
one half, then we have Root-t convergence, that is

\/E([a”’t]—[a”DQN(O,Pa) (4.2)

Qx t Ay
VE(| e =] ) 2 N .m)
b:z;,t ba:
This means that, if the conditions of the theorem are satisfied, the speed
at which the estimates ar ¢, @z, ¢, br ¢, bs,¢, converge to the true values ar,
Qg, by, by, 18 ToOt-t, that is the speed at which in classical econometrics,

the mean of the distribution of the Least Square Estimates converge to
the true values of the parameters estimated'>.

4.1 Speed of Convergence and Policy Design

In terms of policy decisions, we have seen that the policy maker through his
reaction function will affect the values of the coefficients of the matrixes R
and p,R. This means that the evolution of estimated coefficients used in the
forecasting process (i.e., the speed at which private agents learn) strictly depends
on the policy that has been implemented.

We could represent graphically all these informations plotting the speed of
convergence level curves. The level curves represent combinations of the policy
coefficients +y, and v, of a generic expectations-based reaction function (2.20)
that determine a given speed of convergence, under the parameterization of
Clarida, Gali and Gertler (1999) (fig. 5) and by Woodford (1999) (fig.6).

3 Marcet and Sargent show an important consequence of this theorem, that is, for eigen-
values of the transition matrices higher than 0.5, convergence is slower in the sense that the
asymptotic variance-covariance matrices (FPa,Pp) of the limiting distribution are bigger. In
particular, what happens is that the importance of initial conditions fails to die out at an
exponential rate (as is needed for root-t convergence).
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Fig.5 The speed of learning isoquants under the expectations-based policy rule (CGG parametrization)
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Result 1: The level curves could be used to discriminate between policies
that deliver different speed of the transition to the REE.

Each level curve corresponds to the combination of policy parameters v,
and 7, that determines the same eigenvalues of the matrix R'*. For example,
the combinations of v, and «, that stay below the level curve z = 1 implies
an explosive learning process: for these combinations of the policy coefficients,

MHere we consider only the matrix R, because if the eigenvalues of R are lower than a
certain value x, even the matrix p, R will have eigenvalues smaller than x. Moreover, notice
that the two matrices have two eigenvalues, but since in order to have a certain velocity of
convergence we need all the eigenvalues to be lower than a certain level, we just consider the
bigger of the two. For example, in orther to have root-t convergence we need al the eigenvalues
of the p, R and R to have the real part smaller than 0.5, that means a necessary and sufficient
condition in order to have root-t convergence we need the bigger eigenvalue of the matrix R
to have the real part smaller than 0.5.



we don’t have E-stability. The combinations of v, and 7, that stay above the
level curve z = 0.1 implies a very fast learning process. The combinations of 7,
and vy, that stay above the level curve z = 0.5 implies a learning process that
converges to the REE at a root-t speed.

Result 2: The speed of convergence of the learning process under the optimal
expectations-based reaction function (2.11), depends negatively on the weight
that the policy maker gives to output gap relatively to inflation. With flexible
inflation targeting policies the private agents’ learning process is very slow. With
strict inflation targeting policies the private agents’ learning process is very fast.

The literature on monetary policy under rational expectation have shown
that under an inflation targeting policy, the bigger the weight that the policy
maker gives to output gap, the slower will be the convergence to the inflation
target.

In our case, under bounded rationality, if we consider the specific expectations-
based policy rule (2.11), derived without taking into account that the policy
maker could make active use of private agents’ learning behavior, we find an
interesting result that relates speed of convergence and relevance of the output
gap objective. In figures 5 and 6 we can see that, under both parametrization of
CGG and Woodford, when the policymaker cares equally about output gap and
inflation (A = 1), the value of v, % (point B) is on the level curve z = 0.9 (i.e.,
the biggest eigenvalue of the matrix R is almost 0.9); in this case the learning
process is very slow. When the policy make follow a strict inflation targeting
policy (A = 0), instead, the value of 4%, v% (point A) is on the level curve z = 0.1
(i.e., the biggest eigenvalue of the matrix R is almost 0.1); in this case we have
a very fast learning process.

To have a clearer picture of how, under the optimal expectations-based policy
derived without taking into account that the policy maker could make active
use of private agents’ learning behavior, the biggest eigenvalue of the matrix R
changes as the parameter ) increases, let’s consider the following picture.

Fig.7 Speed of convergence under the expectations-based policy rule for different X’s

z
A
1+ —== .
r ’/"

0.8 «

1
0.6
0.4 :— — Woodford

-+ = CGG
0.2
| | | | >
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Result 3: The speed of convergence of the learning process under a re-
stricted set of asymptotically-optimal expectations-based reaction functions, de-
pends negatively on the weight that the policy maker gives to output gap relatively
to inflation.

Let’s consider a subset of asymptotically-optimal expectations-based reac-
tion functions:

iy =y + ’ymEtl't+1 + %Eﬂtﬂ T Yu Ut + Gt

with
Vo = TX (4.3)
vy = 7
B ’YR*’Y* ay
Yo = T = =
o3 o3
R *
Y =) brpy ag
VYu = 75_( ) + VaPu (_bﬂ_ba?)
Qo A

These policies, once the private agents’ learning process has converged to ra-
tional expectations, will determine the same equilibrium that we would have
with the optimal monetary policy under discretion and rational expectations.
Moreover, in this reaction function the coefficient of the constant term + is equal
to the one of the expectations-based reaction function (2.11).

Substituting the values of WQR, vE AR 4* determined in equation (2.12)
and (2.19) into the system of equations (4.3), we obtain the combination of ~,
and v, that determine asyntotically the same equilibrium that we obtain under

(2.11):

(M) (tap) =N (1-P)
Tm = a(A+a2)p T a =

Graphically, we obtain the following mapping, under CGG parametrization (a
similar result could be obtained under Woodford parametrization):
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Fig.8 A subset of asymptotically-optimal expectations based reaction functions

yn

From this picture we can see that under an expectations-based reaction
function, that is asymptotically optimal and v = v*, the higher is the relative
weight on output gap (), the lower will be the maximum speed of convergence
of the learning process that a policymaker could induce. In particular, in this
case, with A > 0.5 we have no combination of v}, v% that could determine at
least a root-t convergence.

The same result is obtained with a different subset of asymptotically-optimal
expectations-based reaction functions, characterized by thefollowing coefficients

Yo = 18 (4.4)
Yo = Yu
Ve = ——72527——‘* 5;7@
R _
.= WR_M%&%_%)%
bx Py, by

This policy, once the private agents’ learning process has converged to rational
expectations, will determine the same equilibrium that we would have with the
previous subset of policies and under the policy (2.11). Notice that in this
reaction function the coefficient that shows the reaction to cost push shocks
(7,,) is equal to the one of the expectations-based reaction function (2.11).
Substituting the values of yf, yE 4B 4% determined in equation (2.12)
and (2.19) into the system of equations (4.4), we obtain the combination of ~,

and v, that determine asyntotically the same equilibrium that we obtain under
(2.11)

(A +a?) (pA — ) + \Ba a

19



Graphically, we obtain the following mapping, under CGG parametrization (a
similar result could be obtained under Woodford parametrization):

i=0

Fig.9 A subset of asymptotically-optimal expectations based reaction functions

yn
4 z=01
h z =,0.3
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We want now to see how the policy maker can make active use of private
15

agents learning behavior
4.2 The Mapping from PLM to ALM
In the previous sections we have analyzed an economy where agents formulate
forecasts through recursive least square regressions, following the traditional

approach that looks at the eigenvalues of the transition matrices. In order to
have a clearer picture of what happens in such an economy we consider now

more in detail the mapping from perceived to actual variables.
Let’s define the parameters
AB
r = ——- 4.5
(A + a?) (45)
pYe’
> = ———7
(A +a?)”
A
vt = —
(A + a?)
and rewrite the expectation-based reaction function (2.11) proposed by Evans
(4.6)

and Honkapohja (2002) in the following way
.EH _ % *E *E * *

1 = Ve baTepr + Y LaTepr YU + Vg9t

151n a follow up paper I characterize the speed of convergence of the learning process under

alternative policy rules
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where the coefficients could be rewritten as

* pr— —_—— 4.
¥ o (4.7)
* * 1
Yzr Vg = ;
_]_"*
Vo = (Hﬁ >
ap
1— U~
Vu = ( )
po

Under this policy rule the economy evolves according to the two following
equations:

Ty = Po* + F*Et’ﬂ't+1 + \I/*ut (48)
P —I') 5 1—-w
Ty = ; — ME¢7T¢+1 - %ut (49)

We know that under least square learning the ALM of 7y and z; will be

Ty = P* + F*aﬂyt + (pur*bwyt + \I/*) Ut (410)
i I -Ir 1—v~
. T )aw,ﬁ(_pu(ﬁ )y, L ))ui
e} e} «@ «@
In order to analyze convergence of the learning equilibrium to the REE, we
could consider the following mappings!'®
San (ani) = " + T any (4.11)
Sby (br,t) = O +T"p,bre (4.12)
P* I
Sam (aﬂ',ta az,t) = - (ﬁfw)aﬂ'yt (413)
-Ir 1—0*
Sb, (bt bat) = _Pu(ﬁfw)bw,t - g (4.14)

These mappings show, in each period, how the estimates used by private agents
in order to make forecasts (ar ¢, @y t,0r ¢, by e), would affect the actual value of
inflation and output gap. Notice that these four expressions could be interpreted
as mappings from perceived to actual dynamics of the two variables.

In particular, we could use the following definition:

16 For details, see Appendix
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Definition 1 Let’s consider the four mappings (4.11), (4.12), (4.13), (4.14).
If

Sa7r (aw,t) — Qp ¢ = Qp = <I>* (1 — F*)il (415)

Sp. (bri) = bpy =br =U* (1 —p, )" (4.16)
1-— o

Sa, (aw,ta a:(;,t) — Qg = Qg = (f.éﬁ)m (4.17)

B puﬂ) U — (1 B pur*)
«Q (]‘ - pur*)

1
Sb, (b, bo,t) = bajp = by = ( (4.18)

we say that the learning process have converged to a stationary equilib-
rium, the REE.

If we consider the first two mappings, we could easily verify that a necessary
condition for convergence is that

AB
I = 1 4.19
A+ a?) < (4.19)
In this case, the mapping!”
San (ari) = " + T any (4.20)

have a slope smaller than one.

Fig.10 The mapping Sa, (@x,;) from PLM to ALM

SelGr)
A

Ay

17Similarly for the mapping
Sty (brt) = " + T"p, b

the necessary condition for convergence is I'*p,, < 1. Notice that if I'* < 1 the condition is
obviously satisfied since p,, < 1
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If we consider the third and forth mappings, we could easily verify that they
depends only on what happens to the first two. In particular notice that the
slope of S, and S,, with respect to ar; and ar; is equal to zero.

Graphically this means that the mapping!®

e (B-TI7)
Sam (aﬂ—’t, am,t) = ; — Qg (421)

«

is an horizontal line

Fig.11 The mapping Sa, (@x,;) from PLM to ALM

Sax (a)w‘vaacr)
A
Sax (Q\;z‘:@z())
\ \/ Soc (ax,lnaml)
e
» a,
Notice that, since
aSa_T (aﬂ',ta az,t) <0 (422)

8aﬂ—,t

if ar, is increasing over the learning process (i.e., we approach the fixed point
of the mapping S, (ax:) from below), the S,, (ar ¢, az+) mapping will move
downward (as in the picture). This downward movement will end up when a, ¢
converges to a,.

4.3 Speed of convergence and the Mapping from PLM to
ALM

Let’s now use this framework in order to analyze the speed of convergence of
the learning process to the RE. As we have seen before, the speed at which

18Similarly for the mapping

(-1,  (-w)

5

S, (b"r,hbzat) = Py a
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agents learn depends on the eigenvalues of the matrix B. That the value of the
Eigenvalues, under the optimal expectations-based policy that does not take into
account the transition to the REE (2.11), are

z17 = 0 (4.23)
A
zZ9 = 7ﬂ = F*
(A + a?)
Notice that I'* is also the slope of the mapping S, (ar,t).

Since I'm considering A as an exogenous policy parameter, we can assume
that the policy maker gives a positive weight to output gap, for example A = 0.5
(notice, that with this weight, we are assuming that the policymaker cares two
times more about inflation than about output gap). In this case the mapping

Sar (ang) = " +T"an, (4.24)

will have a slope equal to 0.76 under CGG parametrization and 0.99 under the
Woodford’s one; graphically the mapping will be

Fig.12 The mapping Sa, (ax,:) from PLM to ALM under CGG parametrization and A=0.5

Saﬂiam)

8 — Sul )

6 —

ay
4 —
2 /.
e

| | a | | [ 7 Gnt
2 4 6 8 10
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Fig.13 The mapping Sa, (ax,;) from PLM to ALM under Woodford parametrization and A=0.5
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From these pictures (in particular the one that refers to Woodford parametriza-
tion) it is easy to see that, in order to converge to the REE (the point where
the mapping crosses the 45 degree line), even if we start from a point relatively
not too far from the REE, we will need many periods, since the slope of the
mapping is close to one.

4.4 Adjusting the learning Speed without affecting the
REE

In the previous section, under the specific expectation-based reaction function
(2.11) suggested by Evans and Honkapohja (EH policy), we saw that if the policy
maker want to follow a flexible inflation targeting policy rule, the private agents’
learning process will converge very slowly to the RE. Now, we could ask how a
policy maker that wants to reach in the long run (i.e., once the private agents
have learned the REE) the same REE determined by the reaction function
(2.11), could speed-up or slow down the private agents learning process.

In order, for example, to speed-up the transition, the policy maker could
follow an Adjusted Learning Speed (ALS) expectations-based policy rule that
determines the new mappings S;, (ar,) and Sy _(bz ). This mappings will have
the same fixed points of S, (ax,) and Sy, (br,) (i-e., once the learning process
has converged to RE, we have a policy that is optimal under discretion and
RE), but with a smaller slope I'V. Graphically, the new policy should generate a
rotation of the mapping taking as fixed the point where it crosses the 45 degree
line.
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Fig.14 The mapping Sl’l7r (ax,¢) under the Adjusted-Learning-Speed policy

S (Gr)
A
Slctr)
P - S’Uﬂ(@rf)
.
a1y A
-
XA
<
» Gy
Let’s
1>T">T1 (4.25)
then the new mapping S, (ar,) will bet?
8! (arg) =@ (1T ' (1 —T') + Man, (4.26)
The resulting value for inflation will be
o*(1-1") U (1-p,0")
=——— 2 +T'FE —_— 4.2
N e ) B (R O 20

and the one for output gap,

LTy (ﬁ—r’)E7T+ - (1—‘11* (1—p 97 (1 —puf’))u
t (1 — F*) o o tNt+1 o t
(4.28)

and the new Adjusted-Learning-Speed expectation reaction function will be:

it = YL By + Ve Brmgy + Yiw + Yoo (4.29)

19Similarly, the new mapping S;_ (br ) will be

Sl’>,,r (bTryt) = (1 - qu*)_l (1 - purl) + F’pub‘ﬂ'yt
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where

v o e (1-TY) -1 (4.20)
ap

I A
ayp

1= (1= p, %) ' (1= p,I"))
(pOé

| <,6—P’)>

2
>~
I |
—~ 6 |~

Comparing now the two policies we obtain the following results:
Result 4: If we impose

r=r* (4.30)

the EH and the ALS expectation-based policies will coincide.

Just substitute (4.30) into (4.29) and we obtain (4.6).

Result 5: When the learning process has converged to the rational expec-
tation equilibrium, the level of inflation and output gap?® is the same under the
EH and the ALS expectation-based policies:

=0 (1—=T%) '+ U (1—p,T%) " uy (4.31)
_ (1 - 5) o - (1 7 qu*) B (1 - ﬂpu) v
T T -1 a (1= pal7) “ (4.32)

Proof in the Appendix.

Result 6: If the economy starts from a point where the learning equilibrium
and the REE do mot coincide, than the transition to the REE will be shorter
under the ALS policy than under the EH policy rule.

Let’s consider again a simulation where the initial expectation error under
both policies is 10%, and use a value of IV = 0.5 (i.e., we impose root-t conver-
gence). The results of the simulations are in the following pictures and show
that under the ASL policy the transition is at least five times shorter than under
the EH policy.

201t is easy to show that both policy rules will be

pa¥*p, + (1= p, I = (1= Bp,) ¥*) (1 = py,) 1
" ut + —gt
pa(l—p,I*) ¢

=9 (1—-T")"1+
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Result 7: In the transition to the REE’', under the ALS policy rule, the
policy maker increases the nominal interest rate by a larger amount in response
to a rise in Expected Inflation relative to the case of EH policy rule.

In fact it is easy to show that if

1>T*>T1" (4.33)

21if
1>T*>1
we will have

73] > ||
7,3 =73
Yo =71
vg) >0
71 <7
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than

V= <1 - u) > <1 - ﬁa:*) =7r (4.34)

oy

The intuition is the following: if a policy maker react strongly to a change in
expected inflation, private agents learn faster; since at the beginning, if private
agents learn faster they would make bigger errors, they will adapt their estimates
faster and the transition to the REE will be shorter.

In other words, the stronger the policy maker responds to a change in pri-
vate agents’ expectations, the faster private agents learn and the shorter the
transition to the REE.

Result 8: In the transition to the REE, under the ALS policy the response
of inflation to a positive cost-push shock is lower if we start from an expected
inflation higher than the REE and is higher than under the EH policy rule if we
start from an expected inflation lower than the REE.

The proof is in the Appendix.

This result implies that

AT > AgEH IR by < by (4.35)
while
ATMS < ArFH IR by > by (4.36)

Result 9: In the transition to the REE, under the ALS policy rule the response
of output gap to a positive cost-push shock is lower if we start from an expected
inflation higher than the REE and is higher than under the EH policy rule if we
start from an expected inflation lower than the REE.

The proof is in the Appendix.

This result implies that

Az > AzFH IR by < by (4.37)
while
AzPS < AxFH IF bpy > by (4.38)

Result 10: Welfare analysis. If inflation expectations are higher than the
REE, a policy that determines a fast learning transition will increase social wel-
fare with respect to a policy that determines a slow learning process. If inflation
expectations are lower than the REE, a policy that determines a slow learning
transition will increase social welfare with respect to a policy that determines a
fast learning process.

The policy maker should distinguish between two situations:
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1. When inflation expectations are lower than the REE, it turns out that
actual inflation under learning will be smaller than actual inflation under
RE (and output gap under learning will be higher than output gap under
RE). This means that if we look at the policy maker welfare function, it
would be preferable that agents learn inflation behavior slowly.

2. When inflation expectations are higher than the REE, actual inflation
under learning will be higher than actual inflation under RE (and output
gap under learning will be lower than output gap under RE). This means
that the policy maker would prefer private agents to learn quickly.

Tav.1 Loss in welfare in the first 1000 periods with initial expectations higher than REE
EH I'=001 I"'=03 I"'=05 IM=07 IV=09
32% 14% 17% 20% 26% 3%

Table 1 shows the level of welfare under different policies when the initial
expected inflation is higher than the REE. The first column shows what happen
under the optimal expectation-based policy derived without taking into account
that the policy maker could make active use of private agents’ learning behavior
(the EH expectation-based policy); in this case the loss in terms of welfare with
respect to the RE case is in the order of 32%. The other columns consider
policies adjusted for specific levels of the learning speed: the faster the speed
(first columns) the lower the welfare loss.

Tav.2 Gain in welfare in the first 1000 periods with initial expectations lower than REE

EH TI"=001 I"=03 I"=05 I"=07 I"=09
23% 11% 14% 17% 21% 24%

If we consider the case where initial expected inflation is lower than the REE
(table 2), the welfare gain under learning are determined in the following way:
under the optimal expectation-based policy derived without taking into account
that the policy maker could make active use of private agents’ learning behavior
the gain in terms of welfare with respect to the RE case is in the order of 23%.
The other columns show that the faster the speed (first columns) the lower the
welfare gain.

5 Conclusions and Extensions

In this paper I have shown that considering learning in a model of monetary
policy design is particularly important in order to describe not only the rational
expectation equilibrium to which we could converge, but even to describe the
dynamics that characterize the transition to this equilibrium.

The central message of the paper is that policy makers should look not only
at monetary policies that determines a stable equilibrium under learning, but
should take into account also how policy decisions affect the speed at which
lerning converges to rational expectations. In particular, it is important to
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know that under certain policies, the REE is E-stable, but the period needed in
order to converge to this equilibrium could be incredibly long.

A policy maker that consider his role in determining the dynamics of the

private agents learning process, could choose a policy rule that induces agents
to learn at a given speed, affecting the welfare of the society.

My current research aims at analyzing the dynamics of the speed of conver-

gence of the learnining process under different policy rules and in the case of
monetary policy decisions under commitment.
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6 Appendix
6.1 E-Stability of the REE

In order to derive the ALM of inflation and output gap, we need just to substi-
tute the generic expectations-based reaction function

it =¥+ Vo ErTer1 + VaBemern + vuue + Vg9t

into the IS and AS relation. We obtain the dynamic system

{7” } —Q+R| BT | gy,
Tt t T4
where and
_ [ ey
o= 7|

_ | Brap(l=7,) a(l-ey,)
R[ e(1=,) (190%)}

s=[ 2]

The PLM of the boundedly rational agents is assumed to be well specified??.
Under least square learning, agents at time t estimate the model

Tt = Qn +bgUy + Kpy

Ay + b:cut + Rzt

Tt

by running a least squares regression of m; and x; on an intercept and u; using
data available. Let (ar ¢, bxt, Gy, Dye) denote the least squares estimate using
data on 7;, x; and u;, i = 1,...,t — 1. Expectations are then given by

By — A4 + p, Beug
Eixiq

22 A well specified PLM is the one that consider all the state variables that we have in the
REE:

Tt = ar +brus

Tt = az +byus

g
&
Il

PulUt—1 + Eut
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where, for simplicity, we treat p, as known?® and where
At _ aﬂ',t
az,t
b
B — TI',t
= L
Then, the ALM of inflation and output gap is

[ZZ ] =Q+ RA + (p,RB, + S) uy

Thus the Mapping from PLM to ALM takes the form
T.(A;) = Q + RA,
and
T, (B;) = p,RB; + S

We consider the stability under learning (E-stability) of the rational expecta-
tion solution (A, B), as the situation where the estimated parameters (A, By)

converges to (A, B) over time.
Let’s consider the mapping from PLM to ALM:

T(To, Ty) = (@ + RA, p, RB + 5)

the Expectation Stability is determined by the following matrix differential

equation

d / /! / /! !/ /

— (A, B) =T (A", B') - (A, B')
dr
For this framework E-stability conditions are readly obtained by computing the
derivative of T (A’,B") — (A’, B’) and imposing that the determinant of the
matrix with the derivatives of the previous differential equation with respect to
A and K is bigger than zero. In particular, we need the eigenvalues of both R
and Rp,, to have real parts less than one.

The eigenvalues of Rp,, are given by the product of the eigenvalues of R and
Pus and since 0 < |p, | < 1 it suffices that the eigenvalues of R have the real part
less than one.

Than, let distinguish again between the two cases:

1. The "Real” Case.

In this case we need two conditions to be satisfied in order to have con-
vergence to Rational Expectations under Least Squares Learning:

23This means that we assume, for simplicity, that private agents do not learn about tthe
behavior of the cost push shocks. If not, it too can be estimated by a separate regression of
Ut on Ut—1.
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(a) For Reality
(ap (1= 7) + B+ (1 —¢v,)> =48 (1 — ¢v,) >0

®

That is

(0ol + B4 (1—¢r)) V@l —7)+8+ 1 —¢7,) —481-¢1,)
5 + 3 <1

Under equality we have

’YTI':]‘_ YV

(1-75)

Notice, that if zis smaller than 1 than even zo is smaller than 1.

If we assume the values of the parameters of Clarida, Gali and Gertler
(2000), the relation

1.24 —1.32v, + 0.0992 — 0.8y, + 72 + 0.67,7, > 0

shows the combinations of ~,,7, for which the eigenvalues z; and zy are
real.

In order to have we need

1
>1-—c
Y 37

Grafically, we need to be inside the shadowed area.
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If we assume the values of the parameters from Woodford (1999), the
relation

(0.15 (1 — ) + (0.99) + (1 — (6.37) 7, ))* — 3.96 (1 — (6.37)7,) > 0

shows the combinations of ~,,7, for which the eigenvalues z; and zy are
real.

In order to have we need
Yo >1—042v,

Graphically, we need to be inside the shadowed area.

2. The ”Complex Case”.

In this case we need two conditions to be satisfied in order to have con-
vergence to Rational Expectations under Least Squares Learning:

(a) For the solution to be imaginary, we need

(ap (L= ,) + B+ (1 —¢v,)> =48 (1 — ¢v,) <0

(b) ‘ Real part of z; < 1 ‘

(ap (1 —v,)+ B+ (1—¢7,))
2

<1

That is

1-6 7%

77r>17
o @

Notice, that if zis smaller than 1 than even z5 is smaller than 1.
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If we assume that the Clarida, Gali and Gertler’s parameters, the relation
(031 —7,) +0.9+ (1 —7,))> —4%0.9(1 —7,) <0

shows the combinations of +,.,7, for which the eigenvalues z; and 2z are
complex.

In order to have the eigenvalue z; inside the unit circle, we need

L2
Yo >3 T Ve

Graphically, we need to be inside the shadowed area.

If we assume that the Woodford’s parameters, the relation
(0.15(1 —~,) +0.99+ (1 — (6.37) ym))2 —-396(1—(6.37)v,) <0

shows the combinations of ~,.,~, for which the eigenvalues z; and z9 are com-
plex.

In order to have the eigenvalue z; inside the unit circle, we need
Yo > 0.93 —41.67,

Graphically, we need to be inside the shadowed area.
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10—

>
I I I I Tx
-1 1 2 3
-2

In the following pictures, the shadowed areas will represent to the combina-
tions of v, and v, for which we have convergence of least squares learning to
rational expectation equilibrium, under the alternative values of the parameters
given by Clarida, Gali and Gertler (1999) and by Woodford (1999).

38



Notice that the ”optimal” combinations of 7, ,y, with the CGG (2000) pa-
rameters, are:

For A =0
Teo o= 4
Yoo = 1
For A =1
ve = 1.25
Voo o= 1

And with the Woodford parameters, the ”optimal” combinations of ~y,,v,,
are:

For A=0

Ve = T7.47

vy = 0.157
For A\ =1

ve = 1.004

ve = 0.157

If we look at the graphics we see that for the optimal values we are inside
the Determinancy Region in both cases.
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6.2 Root-t Convergence

Let consider again the Mapping from PLM to ACL under least square learning
hypothesis:

T.(A}) = Q+ RA;
and
T, (B;) = p,RB; + S

From Marcet and Sargent (1992) we know that in order to have "root t conver-
gence” we need the eigenvalues of both R and Rp,,, to be less than %
Let distinguish again between the two cases:

1. The "Real” Case.

In this case we need two conditions to be satisfied in order to have con-
vergence to Rational Expectations under Least Squares Learning:

(a) For Reality

(ap (L= ,) + B+ (1 —¢v,)> =48 (1 — ¢v,) >0

v

That is

(ap (1 —7,)+ B+ (1—¢7,)) \/(fw(l*%r)+6+(1*¢7m))2*4ﬁ(1*¢%) 1
2 N 2 <3

Let consider what happen under equality:

1-26 1-28
2aep «@

Vo =14

x

1

Notice, that if zis smaller than % than even zp is smaller than 5

If we assume the values of the parameters of Clarida, Gali and Gertler
(1999), the relation

1.24 —1.32v, + 0.0992 — 0.8y, + 72 + 0.67,7, > 0

shows the combinations of ~v,.,7, for which the eigenvalues z; and 2z are
real.

In order to have | z; < % we need

v.>—-0.33+2.677,
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2. The ”Complex Case”.

In this case we need two conditions to be satisfied in order to have con-
vergence to Rational Expectations under Least Squares Learning:

(a) For the solution to be imaginary, we need

(ap (1 —7,) + B+ (1 —97,))° =48 (1 — ¢7,) <0

(b) | Real part of z; < %

(ap( =7 ) + B+ (1 —pr,)) 1
2 2
That is
7ﬂ>1+£—k
ap o

Notice, that if zqis smaller than % than even zy is smaller than %

If we assume the values of the parameters of Clarida, Gali and Gertler
(1999), the relation

1.24 —1.32v, + 0.0992 — 0.8v, + 72 + 0.67,7, < 0

shows the combinations of ~,,~, for which the eigenvalues z; and 2z have
an imaginary part.

In order to have | Real part of z; < % we need

v, >4.0-3.33y,

Graphically, in order to have root-t convergence we need to be inside the
shadowed region.

14
12
10

v

Yx
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If we assume the values of the parameters from Woodford (1999), the
relation

(1.5 (1 —~,) +0.99 + (1 — (6.37)7,))* — 3.96 (1 — (6.37)v,) > 0

shows the combinations of +,,7, for which the eigenvalues z; and 2z are
real.

In order to have | z; < % we need

Vo > —2.205 +40.83,
The relation

(1.5 (1 —7,) +0.99 + (1 — (6.37)7,))> — 3.96 (1 — (6.37) v,) < 0

shows the combinations of +,,7, for which the eigenvalues z; and 2z are
complex.

In order to have | Real part of z; < % we need

Ve > T.47 — 41.67y,

I I | > yx
-0.5 0.5 1

6.3 The mapping from PLM to the ALM

Let’s rewrite the conditions for E-stability that we showed in Appendix 1 with
the new notation:

Eym
At t+1 +S/Ut

Tt

|:7Tt:|_Q/+R/

tTt41
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where

, r= 0

\II*
7| e |

[e%

The ALM of inflation and output gap is

[ o } = Q'+ RA+ (0 RB,+ 8w,
Thus the Mapping from PLM to ACL takes the form

T,(A")=Q + R'A

and

T, (B") = p,R'B + 5

that we could write as
T(T,,T,) = (Q + RA', p,R'B'+ 5)

Expectation Stability is determined by the following matrix differential equation

4

d (A//,BN) — T(AN, B//) _ (A//7B//)
T

For this framework E-stability conditions are readly obtained by computing the
derivative of T(A”, B”) — (A”, B”) and imposing that the determinant of the
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matrix with the derivatives of the previous differential equation with respect to
A and B is bigger than zero.

r—1 0 0 0
I 0
det 0 0 p,T* — 1 0 >0
0 0 0 pu— &) 1

Since the matrix is diagonal, in this case the condition for E-stability is simply
given by:

" < 1
r* —
-8 _
(07
" < i
Pu
I'™ —
c-p _ 1
@ pu

6.4 A comparison of the transition under two different
policies

‘We analize here the derivations of the results showed in section 4

6.4.1 Result 7 - The response of inflation to a cost-push shock

We consider the response of inflation to a positive cost-push shock under the
two different policies. Let’s assume that at time ¢,

ALS EH

b7rt :bw,t =bnp
that is the estimate of b, is the same under ALS and EH policies. Let’s assume
that up to time ¢ u; = 0. In ¢t we have ¢, > 0 that implies u; = & > 0.
Let’s assume that from ¢ + 1 on, ¢ = 0. Let’s look at the derivative of the
inflation with respect to the shock, conditional to the estimation of the learning
coefficients at time t being the same under the two policies:

87TEH
om ks U (1—p,I"
T :Purlbw,tJr ( pu* )
Ouy (]‘ - pur )

and for

I <TI*
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A’IT?LS > AWfH IF by < bg
while

ATHS < AgEH I by > by

6.4.2 Result 8 - The response of output-gap to a cost-push shock

We consider the response of inflation to a positive cost-push shock under the
two different policies. Let’s assume that at time ¢,
b =Vl = b

that is the estimate of b, is the same under ALS and EH policies. Let’s assume
that up to time t u; = 0. In t we have ¢, > 0 that implies u; = ¢4 > 0. Let’s
assume that from ¢ + 1 on, ¢, = 0. We consider the derivative of the output
gap with respect to the shock, conditional to the estimation of the learning
coefficients at time t being the same under the two policies::

gz (8 —1I7) (1—-v")

= —py bt —

Ouy @ «

orpls (g1, (1w (1= p,0) (1= p,I))
= - ot Pu —

Ouy « «

and for

I'<T*

AI?LS > A:UtEH IF  br < bg
while

AzPES < AxPH TR bpy > by
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